2/EH-28 (ii) (Syllabus-2015)

2018
(April)

STATISTICS

(Elective/Honours)
(Probability Distributions and
Statistical Inference)
[STEH-2(TH)]

Marks : 56

Time: 3 hours
The figures in the margin indicate full marks for the questions
Answer five questions, taking one from each Unit
Unit-I

1. (a) Define a binomial variate. Obtain its distribution with parameters p and $n .2+4$
(b) Obtain the m.g.f. of the binomial distribution and hence or otherwise obtain the mean and variance of the distribution.
2. (a) Define a geometric distribution. 2
(b) Let X be a discrete random variable having geometric distribution with parameter p. Obtain its mean and variance.
(c) State and prove the reproductive property of the Poisson distribution. Show that the mean and variance of this distribution are equal.
UNIT-II
3. (a) Define normal distribution. Mention the main characteristics of this distribution and draw the normal curve.
(b) Show that any linear combination of n independent normal variates is also a normal variate.
(c) Show that the exponential distribution 'lacks memory' if X has an exponential distribution, then for every constant $a \geq 0$, one has

$$
\begin{align*}
& P(Y \leq x \mid X \geq a)=P(X \leq x) \tag{3}\\
& \text { for all } x, \text { where } Y=X-a
\end{align*}
$$

6. (a) State and prove Chebyshev's inequality. $2+4$
(b) Define the following:
(i) Student's t statistic
(ii) F-distribution
7. (a) What do you mean by 'point estimator'? Define the following terms with $1+6$ example:
(i) Consistency
(ii) Efficiency
(iii) Unbiasedness
(iv) Sufficiency
(b) If X be a normal variate with parameters μ and σ^{2}, find the MLE for (i) μ when σ^{2} is known and (ii) σ^{2} when μ is known. $\quad 4$
8. (a) Explain clearly

8D/1712 error'. Clearly the term 'standard
(b) The variance of the sample mean is σ^{2} / n, where σ is the population standard deviation and n is the size of the random sample. Prove that the SE of mean of a random sample of size n from a population with variance σ^{2} is σ / \sqrt{n}.
(c) What are the conditions for the validity of χ^{2}-test?
(d) Show that the sum of independent chi-square variates is also a χ^{2}-variate. 4
4. (a) Let X and Y be independent standard normal variates. Obtain the m.g.f. of $X Y$.
(b) Write short notes on the following :
(ii) $\mathrm{Q}-\mathrm{Q}$ plot
(ii) P-P.plot

$$
U_{\text {NIT-III }}
$$

(4)

8. (a) Define minimum variance unbiased estimator. If T_{1} is an MVUE of $\gamma(\theta)$ and T_{2} is any other unbiased estimator of $\gamma(\theta)$ with efficiency $e<1$, then prove that no unbiased linear combination of T_{1} and T_{2} can be an MVUE of $\gamma(\theta)$. $2+5$
(b) What do you mean by confidence interval and confidence limits? 4
UNIT-V
9. (a) Illustrate the following terms with example :
(i) Null and alternative hypothesis
(ii) Errors of type I and type II
(iii) Critical region
(iv) Level of significance
(b) Explain the test of significance for difference of proportions.
10. (a) Explain clearly the assumptions involved in the 't-test' for testing the the two sample the difference between
(b) Write a note on ' t-test' for testing the significance of an observed correlation and regression coefficient.
2/EH-28 (ii) (Syllabus-2015)
